Publications
You can also find my recent publications on my Google Scholar profile.
* means Equal Contribution.
- Zhang, S., Zhang, W., & Gu, Q. (2025). Energy-Weighted Flow Matching for Offline Reinforcement Learning. International Conference on Learning Representations.
- Zhou, Y., Wang, Z., Wang, T., Xing, S., Xia, P., Li, B., Zheng, K., Zhang, Z., Chen, Z., Zheng, W., & others. (2025). AnyPrefer: An Automatic Framework for Preference Data Synthesis. International Conference on Learning Representations.
- Wang, Z., He, W., Liang, Z., Zhang, X., Bansal, C., Wei, Y., Zhang, W., & Yao, H. (2025). CREAM: Consistency Regularized Self-Rewarding Language Models. International Conference on Learning Representations.
- Sun, J., Zhang, W., Chen, Y., Hoar, B. B., Sheng, H., Yang, J. Y., Gu, Q., & Liu, C. (2025). Inquiry into the Appropriate Data Preprocessing of Electrochemical Impedance Spectroscopy for Machine Learning. The Journal of Physical Chemistry C.
- Zhang, J., Zhang, W., Zhou, D., & Gu, Q. (2024). Uncertainty-Aware Reward-Free Exploration with General Function Approximation. Forty-First International Conference on Machine Learning.
- Zheng, W., Chen, Y., Zhang, W., Kundu, S., Li, Y., Liu, Z., Xing, E. P., Wang, H., & Yao, H. (2024). CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing. Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning.
- Zhang, W., Fan, Z., He, J., & Gu, Q. (2024). Achieving Constant Regret in Linear Markov Decision Processes. The Thirty-Eighth Annual Conference on Neural Information Processing Systems.
- Zhao, L., Deng, Y., Zhang, W., & Gu, Q. (2024). Mitigating Object Hallucination in Large Vision-Language Models via Classifier-Free Guidance. ArXiv Preprint ArXiv:2402.08680.
- Huang, Z., Hwang, J., Zhang, J., Baik, J., Zhang, W., Wodarz, D., Sun, Y., Gu, Q., & Wang, W. (2024). Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent Dynamical Systems. Proceedings of the ACM on Web Conference 2024, 4607–4617.
- Hoar, B. B., Zhang, W., Chen, Y., Sun, J., Sheng, H., Zhang, Y., Chen, Y., Yang, J. Y., Costentin, C., Gu, Q., & others. (2024). Redox-Detecting Deep Learning for Mechanism Discernment in Cyclic Voltammograms of Multiple Redox Events. ACS Electrochemistry, 1(1), 52–62.
- Sheng, H., Sun, J., Rodrı́guez Oliver, Hoar, B. B., Zhang, W., Xiang, D., Tang, T., Hazra, A., Min, D. S., Doyle, A. G., & others. (2024). Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation. Nature Communications, 15(1), 2781.
- Lopez, V. K., Cramer, E. Y., Pagano, R., Drake, J. M., O’Dea, E. B., Adee, M., Ayer, T., Chhatwal, J., Dalgic, O. O., Ladd, M. A., & others. (2024). Challenges of COVID-19 Case Forecasting in the US, 2020–2021. PLoS Computational Biology, 20(5), e1011200.
- Zhang, J., Zhang, W., & Gu, Q. (2023). Optimal horizon-free reward-free exploration for linear mixture mdps. International Conference on Machine Learning, 41902–41930.
- Shea, K., Borchering, R. K., Probert, W. J. M., Howerton, E., Bogich, T. L., Li, S.-L., van Panhuis, W. G., Viboud, C., Aguás, R., Belov, A. A., & others. (2023). Multiple models for outbreak decision support in the face of uncertainty. Proceedings of the National Academy of Sciences, 120(18), e2207537120.
- Ji, K., Zhao, Q., He, J., Zhang, W., & Gu, Q. (2023). Horizon-free Reinforcement Learning in Adversarial Linear Mixture MDPs. The Twelfth International Conference on Learning Representations.
- Zhang, W., He, J., Fan, Z., & Gu, Q. (2023). On the interplay between misspecification and sub-optimality gap in linear contextual bandits. International Conference on Machine Learning, 41111–41132.
- Zhang, W., He, J., Zhou, D., Gu, Q., & Zhang, A. (2023). Provably efficient representation selection in low-rank Markov decision processes: from online to offline RL. Uncertainty in Artificial Intelligence, 2488–2497.
- Zhang, W., Wang, X., Smith, J., Eaton, J., Rees, B., & Gu, Q. (2023). Diffmol: 3d structured molecule generation with discrete denoising diffusion probabilistic models. ICML 2023 Workshop on Structured Probabilistic Inference {\Backslash&} Generative Modeling.
- Deng, Y., Zhang, W., Chen, Z., & Gu, Q. (2023). Rephrase and respond: Let large language models ask better questions for themselves. ArXiv Preprint ArXiv:2311.04205.
- Zhang, W., Wang, X., Nie, W., Eaton, J., Rees, B., & Gu, Q. (2023). MoleculeGPT: Instruction Following Large Language Models for Molecular Property Prediction. NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development.
- Cramer, E. Y., Ray, E. L., Lopez, V. K., Bracher, J., Brennen, A., Castro Rivadeneira, A. J., Gerding, A., Gneiting, T., House, K. H., Huang, Y., & others. (2022). Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences, 119(15), e2113561119.
- Hoar, B. B., Zhang, W., Xu, S., Deeba, R., Costentin, C., Gu, Q., & Liu, C. (2022). Electrochemical mechanistic analysis from cyclic voltammograms based on deep learning. ACS Measurement Science Au, 2(6), 595–604.
- Jia, Y., Zhang, W., Zhou, D., Gu, Q., & Wang, H. (2021). Learning Neural Contextual Bandits through Perturbed Rewards. International Conference on Learning Representations.
- Zhang, W., Zhou, D., & Gu, Q. (2021). Reward-free model-based reinforcement learning with linear function approximation. Advances in Neural Information Processing Systems, 34, 1582–1593.
- Bracher, J., Wolffram, D., Deuschel, J., Görgen, K., Ketterer, J. L., Ullrich, A., Abbott, S., Barbarossa, M. V., Bertsimas, D., Bhatia, S., & others. (2021). A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave. Nature Communications, 12(1), 5173.
- Zhang, W., Zhou, D., Li, L., & Gu, Q. (2020). Neural Thompson Sampling. International Conference on Learning Representations.
- Ray, E. L., Wattanachit, N., Niemi, J., Kanji, A. H., House, K., Cramer, E. Y., Bracher, J., Zheng, A., Yamana, T. K., Xiong, X., & others. (2020). Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the US. MedRXiv, 2020–2008.
- Wu, Y. F., Zhang, W., Xu, P., & Gu, Q. (2020). A finite-time analysis of two time-scale actor-critic methods. Advances in Neural Information Processing Systems, 33, 17617–17628.
- Zou, D., Wang, L., Xu, P., Chen, J., Zhang, W., & Gu, Q. (2020). Epidemic model guided machine learning for COVID-19 forecasts in the United States. MedRxiv, 2020–2005.
- Liu, S., Zhang, W., Wu, X., Feng, S., Pei, X., & Yao, D. (2018). A simulation system and speed guidance algorithms for intersection traffic control using connected vehicle technology. Tsinghua Science and Technology, 24(2), 160–170.